complete convergence of moving-average processes under negative dependence sub-gaussian assumptions

نویسندگان

mohammad amini

hamid reza nili sani

abolghasem bozorgnia

چکیده

the complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. as a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

complete convergence of moving-average processes under negative dependence sub-gaussian assumptions

the complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. as a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

Complete convergence of moving average processes under dependence assumptions 1

Let {Yi;-oc < i < c~} be a doubly infinite sequence of identically distributed and (b-mixing random variables, (ai; ~ < i < oc} an absolutely summable sequence of real numbers. In this paper, we prove the complete convergence of {Ek=xn ~io~=_¢xz ai+kYi/nt/,; n>~ 1} under some suitable conditions. AMS classification: 60G50; 60F15

متن کامل

On the Precise Asymptotics in Complete Moment Convergence of Moving Average Processes under NA Random Variables

Let {ε i | − ∞ < i < ∞} be a sequence of identically distributed negatively associated random variables and {a i | − ∞ < i < ∞} a sequence of real numbers with

متن کامل

Moving Average Processes with Infinite Variance

The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 38

شماره 3 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023